350 research outputs found

    A mathematical model for thermosensitive liposomal delivery of Doxorubicin to solid tumour.

    No full text
    The effectiveness of anticancer treatments is often hampered by the serious side effects owing to toxicity of anticancer drugs and their undesirable uptake by healthy cells in vivo. Thermosensitive liposome-mediated drug delivery has been developed as part of research efforts aimed at improving therapeutic efficacy while reducing the associated side effect. Since multiple steps are involved in the transport of drug-loaded liposomes, drug release, and its uptake, mathematical models become an indispensible tool to analyse the transport processes and predict the outcome of anticancer treatment. In this study, a computational model is developed which incorporates the key physical and biochemical processes involved in drug delivery and cellular uptake. The model has been applied to idealized tumour geometry, and comparisons are made between continuous infusion of doxorubicin and thermosensitive liposome-mediated delivery. Results show that thermosensitive liposome-mediated delivery performs better in reducing drug concentration in normal tissues, which may help lower the risk of associated side effects. Compared with direct infusion over a 2-hour period, thermosensitive liposome delivery leads to a much higher peak intracellular concentration of doxorubicin, which may increase cell killing in tumour thereby enhancing the therapeutic effect of the drug

    Local coexpression domains in the genome of rice show no microsynteny with Arabidopsis domains

    Get PDF
    Chromosomal coexpression domains are found in a number of different genomes under various developmental conditions. The size of these domains and the number of genes they contain vary. Here, we define local coexpression domains as adjacent genes where all possible pair-wise correlations of expression data are higher than 0.7. In rice, such local coexpression domains range from predominantly two genes, up to 4, and make up ∼5% of the genomic neighboring genes, when examining different expression platforms from the public domain. The genes in local coexpression domains do not fall in the same ontology category significantly more than neighboring genes that are not coexpressed. Duplication, orientation or the distance between the genes does not solely explain coexpression. The regulation of coexpression is therefore thought to be regulated at the level of chromatin structure. The characteristics of the local coexpression domains in rice are strikingly similar to such domains in the Arabidopsis genome. Yet, no microsynteny between local coexpression domains in Arabidopsis and rice could be identified. Although the rice genome is not yet as extensively annotated as the Arabidopsis genome, the lack of conservation of local coexpression domains may indicate that such domains have not played a major role in the evolution of genome structure or in genome conservation

    Air quality and urban sustainable development: the application of machine learning tools

    Full text link
    [EN] Air quality has an efect on a population¿s quality of life. As a dimension of sustainable urban development, governments have been concerned about this indicator. This is refected in the references consulted that have demonstrated progress in forecasting pollution events to issue early warnings using conventional tools which, as a result of the new era of big data, are becoming obsolete. There are a limited number of studies with applications of machine learning tools to characterize and forecast behavior of the environmental, social and economic dimensions of sustainable development as they pertain to air quality. This article presents an analysis of studies that developed machine learning models to forecast sustainable development and air quality. Additionally, this paper sets out to present research that studied the relationship between air quality and urban sustainable development to identify the reliability and possible applications in diferent urban contexts of these machine learning tools. To that end, a systematic review was carried out, revealing that machine learning tools have been primarily used for clustering and classifying variables and indicators according to the problem analyzed, while tools such as artifcial neural networks and support vector machines are the most widely used to predict diferent types of events. The nonlinear nature and synergy of the dimensions of sustainable development are of great interest for the application of machine learning tools.Molina-Gómez, NI.; Díaz-Arévalo, JL.; López Jiménez, PA. (2021). Air quality and urban sustainable development: the application of machine learning tools. International Journal of Environmental Science and Technology. 18(4):1-18. https://doi.org/10.1007/s13762-020-02896-6S118184Al-Dabbous A, Kumar P, Khan A (2017) Prediction of airborne nanoparticles at roadside location using a feed–forward artificial neural network. Atmos Pollut Res 8:446–454. https://doi.org/10.1016/j.apr.2016.11.004Antanasijević D, Pocajt V, Povrenović D, Ristić M, Perić-Grujić A (2013) PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Sci Total Environ 443:511–519. https://doi.org/10.1016/j.scitotenv.2012.10.110Brink H, Richards JW, Fetherolf M (2016) Real-world machine learning. Richards JW, Fetherolf M (eds) Manning Publications Co. Berkeley, CA. https://www.manning.com/books/real-world-machine-learning. Accessed 26 Apr 2020Cervone G, Franzese P, Ezber Y, Boybeyi Z (2008) Risk assessment of atmospheric emissions using machine learning. Nat Hazard Earth Syst 8:991–1000. https://doi.org/10.5194/nhess-8-991-2008Chen S, Kan G, Li J, Liang K, Hong Y (2018) Investigating China’s urban air quality using big data, information theory, and machine learning. Pol J Environ Stud 27:565–578. https://doi.org/10.15244/pjoes/75159Corani (2005) Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning. Ecol Model 185:513–529. https://doi.org/10.1016/j.ecolmodel.2005.01.008Cruz C, Gómez A, Ramírez L, Villalva A, Monge O, Varela J, Quiroz J, Duarte H (2017) Calidad del aire respecto de metales (Pb, Cd, Ni, Cu, Cr) y relación con salud respiratoria: caso Sonora, México. Rev Int Contam Ambient 33:23–34. https://doi.org/10.20937/RICA.2017.33.esp02.02de Hoogh K, Héritier H, Stafoggia M, Künzli N, Kloog I (2018) Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland. Environ Pollut 233:1147–1154. https://doi.org/10.1016/j.envpol.2017.10.025Franceschi F, Cobo M, Figueredo M (2018) Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering. Atmos Pollut Res 9:912–922. https://doi.org/10.1016/j.apr.2018.02.006García N, Combarro E, del Coz J, Montañes E (2013) A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): a case study. Appl Math Comput 219:8923–8937. https://doi.org/10.1016/j.amc.2013.03.018Gibert K, Sànchez-Màrre M, Sevilla B (2012) Tools for environmental data mining and intelligent decision support. In iEMSs. Leipzig, Germany. http://www.iemss.org/society/index.php/iemss-2012-proceedings. Accessed 26 Nov 2018Gibert K, Sànchez-Marrè M, Izquierdo J (2016) A survey on pre-processing techniques: relevant issues in the context of environmental data mining. Ai Commun 29:627–663. https://doi.org/10.3233/AIC-160710Gounaridis D, Chorianopoulos I, Koukoulas S (2018) Exploring prospective urban growth trends under different economic outlooks and land-use planning scenarios: the case of Athens. Appl Geogr 90:134–144. https://doi.org/10.1016/j.apgeog.2017.12.001Holloway J, Mengersen K (2018) Statistical machine learning methods and remote sensing for sustainable development goals: a review. Remote Sens 10:1–21. https://doi.org/10.3390/rs10091365Ifaei P, Karbassi A, Lee S, Yoo Ch (2017) A renewable energies-assisted sustainable development plan for Iran using techno-econo-socio-environmental multivariate analysis and big data. Energy Convers Manag 153:257–277. https://doi.org/10.1016/j.enconman.2017.10.014Kadiyala A, Kumar A (2017a) Applications of R to evaluate environmental data science problems. Environ Prog Sustain 36:1358–1364. https://doi.org/10.1002/ep.12676Kadiyala A, Kumar A (2017b) Vector time series-based radial basis function neural network modeling of air quality inside a public transportation bus using available software. Environ Prog Sustain 36:4–10. https://doi.org/10.1002/ep.12523Karimian H, Li Q, Wu Ch, Qi Y, Mo Y, Chen G, Zhang X, Sachdeva S (2019) Evaluation of different machine learning approaches to forecasting PM2.5 mass concentrations. Aerosol Air Qual Res 19:1400–1410. https://doi.org/10.4209/aaqr.2018.12.0450Krzyzanowski M, Apte J, Bonjour S, Brauer M, Cohen A, Prüss-Ustun A (2014) Air pollution in the mega-cities. Curr Environ Health Rep 1:185–191. https://doi.org/10.1007/s40572-014-0019-7Lässig K, Morik (2016) Computat sustainability. Springer, Berlin. https://doi.org/10.1007/978-3-319-31858-5Li Y, Wu Y-X, Zeng Z-X, Guo L (2006) Research on forecast model for sustainable development of economy-environment system based on PCA and SVM. In: Proceedings of the 2006 international conference on machine learning and cybernetics, vol 2006. IEEE, Dalian, China, pp 3590–3593. https://doi.org/10.1109/ICMLC.2006.258576Liu B-Ch, Binaykia A, Chang P-Ch, Tiwari M, Tsao Ch-Ch (2017) Urban air quality forecasting based on multi- dimensional collaborative support vector regression (SVR): a case study of Beijing-Tianjin-Shijiazhuang. PLoS ONE 12:1–17. https://doi.org/10.1371/journal.pone.0179763Lubell M, Feiock R, Handy S (2009) City adoption of environmentally sustainable policies in California’s Central Valley. J Am Plan Assoc 75:293–308. https://doi.org/10.1080/01944360902952295Ma D, Zhang Z (2016) Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere. J Hazard Mater 311:237–245. https://doi.org/10.1016/j.jhazmat.2016.03.022Madu C, Kuei N, Lee P (2017) Urban sustainability management: a deep learning perspective. Sustain Cities Soc 30:1–17. https://doi.org/10.1016/j.scs.2016.12.012Mellos K (1988) Theory of eco-development. In: Perspectives on ecology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-19598-5_4Ni XY, Huang H, Du WP (2017) Relevance analysis and short-term prediction of PM2.5 concentrations in Beijing based on multi-source data. Atmos Environ 150:146–161. https://doi.org/10.1016/j.atmosenv.2016.11.054Oprea M, Dragomir E, Popescu M, Mihalache S (2016) Particulate matter air pollutants forecasting using inductive learning approach. Rev Chim 67:2075–2081Paas B, Stienen J, Vorländer M, Schneider Ch (2017) Modelling of urban near-road atmospheric PM concentrations using an artificial neural network approach with acoustic data input. Environments 4:1–25. https://doi.org/10.3390/environments4020026Pandey G, Zhang B, Jian L (2013) Predicting submicron air pollution indicators: a machine learning approach. Environ Sci Proc Impacts 15:996–1005. https://doi.org/10.1039/c3em30890aPeng H, Lima A, Teakles A, Jin J, Cannon A, Hsieh W (2017) Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine learning methods. Air Qual Atmos Health 10:195–211. https://doi.org/10.1007/s11869-016-0414-3Pérez-Ortíz M, de La Paz-Marín M, Gutiérrez PA, Hervás-Martínez C (2014) Classification of EU countries’ progress towards sustainable development based on ordinal regression techniques. Knowl Based Syst 66:178–189. https://doi.org/10.1016/j.knosys.2014.04.041Phillis Y, Kouikoglou V, Verdugo C (2017) Urban sustainability assessment and ranking of cities. Comput Environ Urban 64:254–265. https://doi.org/10.1016/j.compenvurbsys.2017.03.002Saeed S, Hussain L, Awan I, Idris A (2017) Comparative analysis of different statistical methods for prediction of PM2.5 and PM10 concentrations in advance for several hours. Int J Comput Sci Netw Secur 17:45–52Sayegh A, Munir S, Habeebullah T (2014) Comparing the performance of statistical models for predicting PM10 concentrations. Aerosol Air Qual Res 14:653–665. https://doi.org/10.4209/aaqr.2013.07.0259Shaban K, Kadri A, Rezk E (2016) Urban air pollution monitoring system with forecasting models. IEEE Sens J 16:2598–2606. https://doi.org/10.1109/JSEN.2016.2514378Sierra B (2006) Aprendizaje automático conceptos básicos y avanzados Aspectos prácticos utilizando el software Weka. Madrid Pearson Prentice Hall, MadridSingh K, Gupta S, Rai P (2013) Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos Environ 80:426–437. https://doi.org/10.1016/j.atmosenv.2013.08.023Song L, Pang S, Longley I, Olivares G, Sarrafzadeh A (2014) Spatio-temporal PM2.5 prediction by spatial data aided incremental support vector regression. In: International joint conference on neural networks. IEEE, Beijing, pp 623–630. https://doi.org/10.1109/IJCNN.2014.6889521Souza R, Coelho G, da Silva A, Pozza S (2015) Using ensembles of artificial neural networks to improve PM10 forecasts. Chem Eng Trans 43:2161–2166. https://doi.org/10.3303/CET1543361Suárez A, García PJ, Riesgo P, del Coz JJ, Iglesias-Rodríguez FJ (2011) Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain). Math Comput Model 54:453–1466. https://doi.org/10.1016/j.mcm.2011.04.017Tamas W, Notton G, Paoli C, Nivet M, Voyant C (2016) Hybridization of air quality forecasting models using machine learning and clustering: an original approach to detect pollutant peaks. Aerosol Air Qual Res 16:405–416. https://doi.org/10.4209/aaqr.2015.03.0193Toumi O, Le Gallo J, Ben Rejeb J (2017) Assessment of Latin American sustainability. Renew Sustain Energy Rev 78:878–885. https://doi.org/10.1016/j.rser.2017.05.013Tzima F, Mitkas P, Voukantsis D, Karatzas K (2011) Sparse episode identification in environmental datasets: the case of air quality assessment. Expert Syst Appl 38:5019–5027. https://doi.org/10.1016/j.eswa.2010.09.148United Nations, Department of Economic and Social Affairs (2019) World urbanization prospects The 2018 Revision. New York. https://doi.org/10.18356/b9e995fe-enWang B (2019) Applying machine-learning methods based on causality analysis to determine air quality in China. Pol J Environ Stud 28:3877–3885. https://doi.org/10.15244/pjoes/99639Wang X, Xiao Z (2017) Regional eco-efficiency prediction with support vector spatial dynamic MIDAS. J Clean Prod 161:165–177. https://doi.org/10.1016/j.jclepro.2017.05.077Wang W, Men C, Lu W (2008) Online prediction model based on support vector machine. Neurocomputing 71:550–558. https://doi.org/10.1016/j.neucom.2007.07.020WCED (1987) Report of the world commission on environment and development: our common future: report of the world commission on environment and development. WCED, Oslo. https://doi.org/10.1080/07488008808408783Weizhen H, Zhengqiang L, Yuhuan Z, Hua X, Ying Z, Kaitao L, Donghui L, Peng W, Yan M (2014) Using support vector regression to predict PM10 and PM2.5. In: IOP conference series: earth and environmental science, vol 17. IOP. https://doi.org/10.1088/1755-1315/17/1/012268WHO (2016) OMS | La OMS publica estimaciones nacionales sobre la exposición a la contaminación del aire y sus repercusiones para la salud. WHO. http://www.who.int/mediacentre/news/releases/2016/air-pollution-estimates/es/. Accesed 26 Nov 2018Yeganeh N, Shafie MP, Rashidi Y, Kamalan H (2012) Prediction of CO concentrations based on a hybrid partial least square and support vector machine model. Atmos Environ 55:357–365. https://doi.org/10.1016/j.atmosenv.2012.02.092Zalakeviciute R, Bastidas M, Buenaño A, Rybarczyk Y (2020) A traffic-based method to predict and map urban air quality. Appl Sci. https://doi.org/10.3390/app10062035Zeng L, Guo J, Wang B, Lv J, Wang Q (2019) Analyzing sustainability of Chinese coal cities using a decision tree modeling approach. Resour Policy 64:101501. https://doi.org/10.1016/j.resourpol.2019.101501Zhan Y, Luo Y, Deng X, Grieneisen M, Zhang M, Di B (2018) Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environ Pollut 233:464–473. https://doi.org/10.1016/j.envpol.2017.10.029Zhang Y, Huan Q (2006) Research on the evaluation of sustainable development in Cangzhou city based on neural-network-AHP. In: Proceedings of the fifth international conference on machine learning and cybernetics, vol 2006. pp 3144–3147. https://doi.org/10.1109/ICMLC.2006.258407Zhang Y, Shang W, Wu Y (2009) Research on sustainable development based on neural network. In: 2009 Chinese control and decision conference. IEEE, pp 3273–3276. https://doi.org/10.1109/CCDC.2009.5192476Zhou Y, Chang F-J, Chang L-Ch, Kao I-F, Wang YS (2019) Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J Clean Prod 209:134–145. https://doi.org/10.1016/j.jclepro.2018.10.24

    Single neuron transcriptomics identify SRSF/ SR protein B52 as a regulator of axon growth and Choline acetyltransferase splicing.

    Get PDF
    We removed single identified neurons from living Drosophila embryos to gain insight into the transcriptional control of developing neuronal networks. The microarray analysis of the transcriptome of two sibling neurons revealed seven differentially expressed transcripts between both neurons (threshold: log(2)1.4). One transcript encodes the RNA splicing factor B52. Loss of B52 increases growth of axon branches. B52 function is also required for Choline acetyltransferase (ChAT ) splicing. At the end of embryogenesis, loss of B52 function impedes splicing of ChAT, reduces acetylcholine synthesis, and extends the period of uncoordinated muscle twitches during larval hatching. ChAT regulation by SRSF proteins may be a conserved feature since changes in SRSF5 expression and increased acetylcholine levels in brains of bipolar disease patients have been reported recently

    Illumination of Parainfluenza Virus Infection and Transmission in Living Animals Reveals a Tissue-Specific Dichotomy

    Get PDF
    The parainfluenza viruses (PIVs) are highly contagious respiratory paramyxoviruses and a leading cause of lower respiratory tract (LRT) disease. Since no vaccines or antivirals exist, non-pharmaceutical interventions are the only means of control for these pathogens. Here we used bioluminescence imaging to visualize the spatial and temporal progression of murine PIV1 (Sendai virus) infection in living mice after intranasal inoculation or exposure by contact. A non-attenuated luciferase reporter virus (rSeV-luc(M-F*)) that expressed high levels of luciferase yet was phenotypically similar to wild-type Sendai virus in vitro and in vivo was generated to allow visualization. After direct intranasal inoculation, we unexpectedly observed that the upper respiratory tract (URT) and trachea supported robust infection under conditions that result in little infection or pathology in the lungs including a low inoculum of virus, an attenuated virus, and strains of mice genetically resistant to lung infection. The high permissivity of the URT and trachea to infection resulted in 100% transmission to naïve contact recipients, even after low-dose (70 PFU) inoculation of genetically resistant BALB/c donor mice. The timing of transmission was consistent with the timing of high viral titers in the URT and trachea of donor animals but was independent of the levels of infection in the lungs of donors. The data therefore reveals a disconnect between transmissibility, which is associated with infection in the URT, and pathogenesis, which arises from infection in the lungs and the immune response. Natural infection after transmission was universally robust in the URT and trachea yet limited in the lungs, inducing protective immunity without weight loss even in genetically susceptible 129/SvJ mice. Overall, these results reveal a dichotomy between PIV infection in the URT and trachea versus the lungs and define a new model for studies of pathogenesis, development of live virus vaccines, and testing of antiviral therapies
    • …
    corecore